| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|-----------------------------------------|-----------------|------------|
|         |            |                      |                                         |                 |            |

Modelling and Optimisation of Power Consumption in Reconfigurable Devices

### Robin BONAMY

PhD since Oct. 2009 CAIRN - IRISA

Advisor : Daniel CHILLET Co-advisors : Olivier SENTIEYS and Sébastien BILAVARN (LEAT)

Comité de Suivi de Thèse, CAIRN, 14th February 2010







| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block<br>000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|-----------------------------------------|-----------------|------------|
|         |            |                      |                                         |                 |            |
| ~       | <u> </u>   |                      |                                         |                 |            |

## System on Chip

SoC : Chip including various functions

- Processor(s)
- Configurable area(s)
- DSP(s)
- Peripheral(s)
- Memory(s)
- Analog

TI : OMAP Xilinx : Zynq-7000 Actel : SmartFusion



2/34 CAIRN - IRISA

| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>0000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
|         |            |                      |                                          |                 |            |

# System on Chip

SoC are more and more used

- Size
- Cost

Power consumption

- Battery size/weight
- Dissipation
- Power rails design





# Need to have early power estimation for heterogeneous systems

| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>0000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
|         |            |                      |                                          |                 |            |
| Outlir  | ne         |                      |                                          |                 |            |

## Open PEOPLE

- 2 Power Modelling
- 3 Hardware Accelerated Block
- 4 Reconfiguration

# OpenPEOPLE : Who?

#### Consortium :

- Lab-STICC UBS
- LORIA INRIA Nancy
- Dart INRIA Lille
- LEAT UNSA
- IRISA-Cairn UR1
- THALES Coms. Colombes
- In Pixal Rennes

Project funded by the  $\overline{\mathrm{ANR}}$ 





#### **Open-PEOPLE** :

**Open-Power and Energy Optimization PLatform and Estimator** 



6/34

Robin BONAMY

### \_ . . . .

### Complete platform to

- allow rapid power and energy estimation and measurement for complex heterogeneous systems
- test the effects of different optimizations on power consumption

CAIRN : Power consumption models for hardware tasks and reconfiguration

- Rachid DRIF (2009)
- Abdoulaye SARRE (2009-2010)
- Ferhat ABBAS (2010)
- Rim ABID (2011)

| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block<br>0000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
|         |            |                      |                                          |                 |            |
| Outlir  | ne         |                      |                                          |                 |            |

## 1 Open PEOPLE

- 2 Power Modelling
- 3 Hardware Accelerated Block

### 4 Reconfiguration

# CMOS Power Consumption [Julien06], [Garcia99], [T197]

- Dynamic Power
  - Voltage <sup>2</sup>
  - Frequency
  - Activity
  - Load (Nets Capacitance)

$$P_d = V_{cc}^2 \times F \times \alpha \times C$$

# CMOS Power Consumption [Julien06], [Garcia99], [T197]

- Dynamic Power
  - Voltage <sup>2</sup>
  - Frequency
  - Activity
  - Load (Nets Capacitance)
- Static Power (Leakage)
  - Area, Occupation Rate
  - Voltage

$$P_{d} = V_{cc}^{2} \times F \times \alpha \times C$$

$$P_s = V_{cc} \times A$$



| Problem | OpenPEOPLE                                                                                                             | Power Modelling<br>○             | Hardware Accelerated Block<br>000000000 | Reconfiguration Conclus<br>000000 |    |
|---------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------|----|
|         |                                                                                                                        |                                  |                                         |                                   |    |
| Power   | Modellin                                                                                                               | g                                |                                         |                                   |    |
|         | <ul> <li>Fine Grain</li> <li>Activit</li> <li>Net le</li> <li>Flip-fli</li> <li>Opera</li> <li>Coarse Grain</li> </ul> | ty<br>ngth<br>ops<br>tors<br>ain | Pb : Pow                                | er estimation done la             | te |
|         | <ul><li> Applic</li><li> RAM</li><li> Area</li><li> Delay</li></ul>                                                    | ation paramete                   | ers Pb : Bad<br>accuracy                | power estimation                  |    |

| Problem | OpenPEOPLE                                                                                                                                  | Power Modelling<br>○           | Hardware Accelerated |                | Reconfiguration | Conclusion |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|----------------|-----------------|------------|
|         |                                                                                                                                             |                                |                      |                |                 |            |
| Power   | Modellin                                                                                                                                    | g                              |                      |                |                 |            |
| •       | <ul> <li>Fine Grain         <ul> <li>Activit</li> <li>Net le</li> <li>Flip-flie</li> <li>Opera</li> </ul> </li> <li>Coarse Grain</li> </ul> | y<br>ngth<br>ops<br>tors<br>in | Pb :                 | Power          | estimation      | done late  |
|         | <ul><li> Applic</li><li> RAM</li><li> Area</li><li> Delay</li></ul>                                                                         | ation paramete                 | rs Pb :<br>accu      | Bad po<br>racy | ower estima     | tion       |
| (       | <ul> <li>State Mac</li> <li>Peak consi</li> </ul>                                                                                           | hine models [<br>umption [Gup  | Benini00]<br>ta03]   |                |                 |            |

• Glitches [Ragh96]

۰...

| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block<br>0000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
| Mode    | ?          |                      |                                          |                 |            |
|         |            |                      |                                          |                 |            |



- What is a model?
  - P/E = f(parameters)

- How to build a model?
  - Measurements following parameters
  - Analysis, Statistics
  - Verification



- FPGA Virtex-5 VLX50T (7200 slices)
- SystemACE CompactFlash controller
- 5 power rails (core, IOs, peripherals)
- Current sense resistors



Previous work on Actel IGLOO.

Future work planned on Virtex 6, Altera Stratix.

| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block | Reconfiguration | Conclusion |
|---------|------------|----------------------|----------------------------|-----------------|------------|
|         |            |                      |                            |                 |            |
| Outlir  | ne         |                      |                            |                 |            |

### 1 Open PEOPLE

- 2 Power Modelling
- 3 Hardware Accelerated Block

### 4 Reconfiguration

| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block<br>●000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
| Context |            |                      |                                          |                 |            |
| Hard    | ware Block | (S                   |                                          |                 |            |



• unload processor core

- Power/Energy/Throughput efficiency [AlteraAN531]
- parallelism level

| Problem | OpenPEOPLE | Power Modelling<br>○ | Hardware Accelerated Block<br>0●00000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
| Context |            |                      |                                          |                 |            |
| C to '  | VHDL       |                      |                                          |                 |            |

Effect of parallelism level on Power consumption

- Generation of hardware blocks
- High level synthesis (C to VHDL)
- Loop unrolling
- PLB block, Microblaze at 100MHz



| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>00●0000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
| Context |            |                      |                                          |                 |            |
| Meas    | urement P  | Protocol             |                                          |                 |            |





- Idle power consumption
- Active power consumption
- Execution Time

| Problem | OpenPEOPLE | Power Modelling<br>⊙ | Hardware Accelerated Block | Reconfiguration | Conclusion |
|---------|------------|----------------------|----------------------------|-----------------|------------|
| Task    |            |                      |                            |                 |            |

### Matrix Multiplication C code

Loop Unrolling Index (LUI) notation :  $LUI_1, LUI_2, LUI_3$ 

Problem OpenPEOPLE Power Modelling Hardware Accelerated Block Reconfiguration Conclusion Power Measurement Ex of Power Consumption Measurement



Figure 1: Power consumption measurements : matrix multiplication software and hardware executed (blue).



### Execution time versus Loop Unrolling Index



Figure 2: Power consumption measurements : matrix multiplication execution time versus total loop unrolling index.(LUI1, LUI2, LUI3)



### Energy consumption versus Loop Unrolling Index



Figure 3: Power consumption measurements : matrix multiplication energy consumption versus total loop unrolling index.(LUI1, LUI2, LUI3)





Figure 4: Energy of the matrix multiplication versus execution time. (LUI1, LUI2, LUI3). Trend  $E = A + B \times t$ .





Figure 5: Representation of power consumption for a hardware task

| Problem   | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>○○○○○○○●○ | Reconfiguration | Conclusion |
|-----------|------------|----------------------|-----------------------------------------|-----------------|------------|
| Power Mea | asurement  |                      |                                         |                 |            |
| Powe      | r and Para | allelization         |                                         |                 |            |



Figure 5: Representation of power consumption for a parallelized hardware task



| Problem    | OpenPEOPLE | Power Modelling<br>⊙ | Hardware Accelerated Block<br>○○○○○○○○● | Reconfiguration | Conclusion |
|------------|------------|----------------------|-----------------------------------------|-----------------|------------|
| Conclusion |            |                      |                                         |                 |            |

- Experiments on two more complex algorithms used in video : part of Full Search Deblocking Filter
- Energy is not a constant

ightarrow When space is available, exploit parallelism of each task

| Problem    | OpenPEOPLE | Power Modelling<br>⊙ | Hardware Accelerated Block<br>○○○○○○○○● | Reconfiguration | Conclusion |
|------------|------------|----------------------|-----------------------------------------|-----------------|------------|
| Conclusion |            |                      |                                         |                 |            |

- Experiments on two more complex algorithms used in video : part of Full Search Deblocking Filter
- Energy is not a constant

 $\rightarrow$  When space is available, exploit parallelism of each task

- $\nearrow$  parallelism level
- 🗡 area
- $\nearrow$  bitstream
  - $\rightarrow$  Impact of reconfiguration ?

| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>0000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|------------------------------------------|-----------------|------------|
|         |            |                      |                                          |                 |            |
| Outlir  | ne         |                      |                                          |                 |            |

### 1 Open PEOPLE

- 2 Power Modelling
- 3 Hardware Accelerated Block
- 4 Reconfiguration



Robin BONAMY





Figure : Partial Reconfiguration segmentation example

Partial reconfiguration (PR) is studied for space and energy saving. [Savary07], [Becker03] No detailed model for PR power consumption



A Microblaze soft. core and a hardware task.



26/34

CAIRN - IRISA

Robin BONAMY

| Problem      | OpenPEOPLE          | Power Modelling<br>0 | Hardware Accelerated Block<br>0000000000 | Reconfiguration<br>○○●○○○ | Conclusion |
|--------------|---------------------|----------------------|------------------------------------------|---------------------------|------------|
| Partial Reco | onfiguration Proces | s                    |                                          |                           |            |
| PR St        | eps                 |                      |                                          |                           |            |

- (1) reconfiguration order arrives
- (2) open bitstream's file
- (3) read bitstream's header
- (4) check header's validity
- (5) read of a bitstream sector
- (6) write data to ICAP (Internal Configuration Access Port)
- (7) repeat (5) and (6) until the end of the bitstream.



### Power Consumption at the Beginning of PR





Robin BONAMY

CAIRN - IRISA

28/34





| Problem           | OpenPEOPLE | Power Modelling<br>⊙ | Hardware Accelerated Block<br>0000000000 | Reconfiguration<br>00000● | Conclusion |  |
|-------------------|------------|----------------------|------------------------------------------|---------------------------|------------|--|
| Power Measurement |            |                      |                                          |                           |            |  |
| Paran             | neters     |                      |                                          |                           |            |  |
|                   |            |                      |                                          |                           |            |  |

Parameters that affect energy consumption

- Memory access
- Activity of the managing core (Read and write)
- PRR Area/Bitstream size
- Difference with the previous configuration

Parameters that don't affect energy consumption

- Shape of the Partial Reconfiguration Region
- Bitstream composition

Parameters to study

- Other memory, soft processor, ICAP IP, device

Trivial model (Virtex5 VLX50T) :

 $E\simeq 39\mu J~per~kB$  with CF, microblaze @ 100MHz, Vcore=1V

| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|-----------------------------------------|-----------------|------------|
|         |            |                      |                                         |                 |            |
| Concl   | usion      |                      |                                         |                 |            |

Power consumption of tasks :

- Increasing the parallelism level increases the area but reduces energy consumption
- Set of measures for different versions of an algorithm : Power, Execution Time, Energy, Area

Power consumption of the reconfiguration :

- Lot of parameters to extract
- Energy consumption is highly related to the region size

| Problem | OpenPEOPLE | Power Modelling<br>0 | Hardware Accelerated Block<br>000000000 | Reconfiguration<br>000000 | Conclusion |
|---------|------------|----------------------|-----------------------------------------|---------------------------|------------|
|         |            |                      |                                         |                           |            |
| Future  | e Work     |                      |                                         |                           |            |

Power consumption of tasks :

• High level tool to "measure" parallelism level of tasks

Comparison with other devices (Virtex 6)

#### Goal

Library of tasks and reconfiguration models

- Estimation and Optimization for Open-PEOPLE platform
- Power manager to reconfigure tasks on-the-fly

| Problem | OpenPEOPLE | Power Modelling<br>⊙ | Hardware Accelerated Block<br>000000000 | Reconfiguration | Conclusion |
|---------|------------|----------------------|-----------------------------------------|-----------------|------------|
|         |            |                      |                                         |                 |            |
| ~ ~     | -          |                      |                                         |                 |            |

# CST information

- Problems
  - Power measurements with resistors
  - Board support
  - Time for measures, reconfiguration projects
- Training
  - ECOFAC (19.5h)
  - IEEE Distinguished Lectures (2h)
  - No professional and general courses
- Publications
  - ARC 2011 (rejected)
  - NEWCAS 2011 (rejected)
  - HEART 2011 (submitted)
  - ReCoSoc 2011 (submitted)
- Presentations
  - Each Open-PEOPLE project meeting
  - CAIRN Team seminar
- 2 month per year at LEAT

| Problem | OpenPEOPLE                                                                                                                                                           | Power Modelling<br>○                                                                                                                                        | Hardware Accelerated Block<br>000000000                     | Reconfiguration                | Conclusion |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|------------|--|--|--|
| Diblic  |                                                                                                                                                                      |                                                                                                                                                             |                                                             |                                |            |  |  |  |
| DIDIIO  | grapny                                                                                                                                                               |                                                                                                                                                             |                                                             |                                |            |  |  |  |
|         | Julien N., Cara<br>ECOFAC 2006                                                                                                                                       | actérisation et mo                                                                                                                                          | délisation de la consommat                                  | ion sur FPGA,                  |            |  |  |  |
|         | Garcia A. and<br>In Internationa                                                                                                                                     | Garcia A. and al., Power modelling in Field Programmable Gate Arrays (FPGA),<br>In International Workshop on Field Programmable Logic and Applications 1999 |                                                             |                                |            |  |  |  |
|         | Texas Instrume                                                                                                                                                       | ents, CMOS Pow                                                                                                                                              | er Consumption and Cpd C                                    | alculation, 1997               |            |  |  |  |
|         | Altera Corpora                                                                                                                                                       | tion, AN 531 : R                                                                                                                                            | educing Power with Hardwa                                   | are Accelerators, 3            | 2008       |  |  |  |
|         | Savary Y., Thé<br>Maîtriser la Co                                                                                                                                    | èse : Etude du Po<br>onsommation dan                                                                                                                        | tentiel des Architectures Re<br>s les Applications Embarqué | econfigurables po<br>ées, 2007 | ur         |  |  |  |
|         | Becker J. and al., Power estimation and power measurement of Xilinx Virtex<br>FPGAs : trade-offs and limitations, in Integrated Circuits and Systems Design,<br>2003 |                                                                                                                                                             |                                                             |                                |            |  |  |  |
|         | Benini L. and<br>Proceedings of                                                                                                                                      | al., Regression-ba<br>the 10th Great I                                                                                                                      | sed RTL power models for<br>.akes symposium on VLSI, 3      | controllers. In<br>2000        |            |  |  |  |
|         | Gupta S. and a<br>Large Scale Int                                                                                                                                    | al., Energy and potential (VLSI)                                                                                                                            | eak-current per-cycle estima<br>Systems, IEEE Transactions  | ation at RTL. Ve<br>s on, 2003 | ry         |  |  |  |
|         | Raghunathan /                                                                                                                                                        | A. and al., Regist                                                                                                                                          | er-transfer level estimation                                | techniques for                 |            |  |  |  |

Raghunathan A. and al., Register-transfer level estimation techniques for switching activity and power consumption. In Proceedings of the 1996

Robin BONAMY

34/34