OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration 0000	Conclusion
	Reconfig	onsumption N urable Archite amic Reconfigu	ctures and	
		Robin BONAM	(
		PhD since Oct. 2009 CAIRN - IRISA	9	

Advisor Co-advisors : Olivier SENTIEYS : Daniel CHILLET and Sébastien BILAVARN (LEAT)

SAV-Erdeven, CAIRN, 2 and 3 December 2010

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration 0000	Conclusion
Outline				

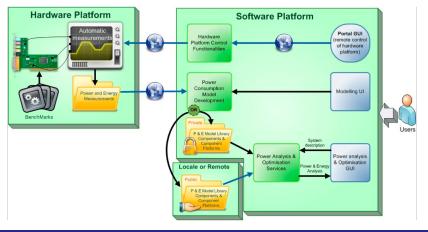
3 Loop Unrolling

4 Reconfiguration

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration 0000	Conclusion

OpenPEOPLE : Who?

Consortium :


- Lab-STICC UBS
- LORIA INRIA Nancy
- Dart INRIA Lille
- LEAT UNSA
- IRISA-Cairn UR1
- THALES Coms. Colombes
- In Pixal Rennes

Project funded by the $\overline{\mathrm{ANR}}$

Open-Power and Energy Optimization PLatform and Estimator

OpenPEOPLE	Platform	Loop Unrolling 000000	Reconfiguration 0000	Conclusion
	PLE : What	for 2		
Upenreur	⁻ LC . VVNat	IOT !		

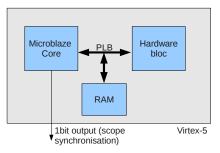
Complete platform to

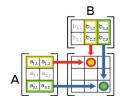
- allow rapid power and energy estimation for complex heterogeneous systems
- test the effects of different optimizations on power consumption

CAIRN : Power consumption models for hardware tasks and reconfiguration

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration 0000	Conclusion

Xilinx ML550 Board


- FPGA Virtex-5 VLX50T (7200 slices)
- SystemACE CompactFlash controller
- 5 power rails (core, IOs, peripherals)
- Current sense resistors


OpenPEOPLE	Platform	Loop Unrolling ●○○○○○○	Reconfiguration 0000	Conclusion
Context				
C to VHDL				

- Generation of hardware blocks
- High level synthesis
- PLB block
- Microblaze @ 100MHz
- DMA

Effect of loop unrolling

OpenPEOPLE	Platform	Loop Unrolling ○●○○○○○	Reconfiguration 0000	Conclusion
Task				
Matrix mult	iplication			

$$(A \times B)_{i,j} = \sum_{k=1}^{n} A_{i,k} \times B_{k,j}$$
(1)

- $32 \times 32 \times 32$, 8bit
- 3 nested loops (32768 *op*)
- static loops

OpenPEOPLE	Platform	Loop Unrolling ○○●○○○○	Reconfiguration 0000	Conclusion
Task				
C code				

. . .

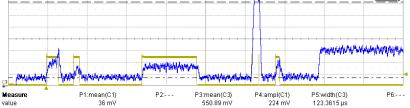


Figure 1: Power consumption measurements : matrix multiplication software and hardware executed (blue).

OpenPEOPLE		atform	Loop Unrolling ○○○○●○○	Reconfiguration	Conclusion
Power Measuremen	t				
E					

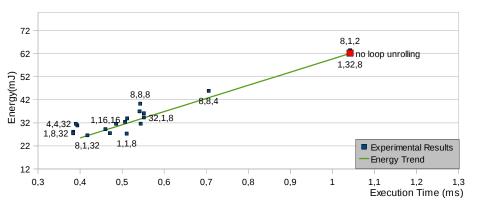


Figure 2: Energy of the matrix multiplication the execution time. Trend equation is $E\{mJ\} = 2.64\{mJ\} + 0.057\{W\} \times t\{ms\}$.

OpenPEOPLE	Platform	Loop Unrolling ○○○○○●○	Reconfiguration 0000	Conclusion
Power Measurement				
Power and	Parallelizatic	n		

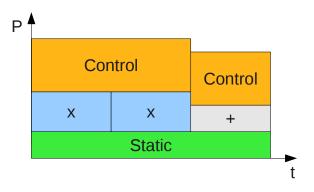
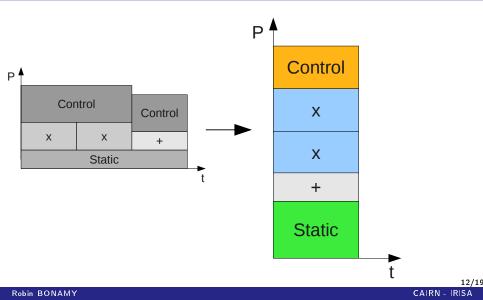



Figure 3: Representation of power consumption for a hardware task

OpenPEOPLE		Platform	Loop Unrolling ○○○○●○	Reconfiguration 0000	Conclusion
Power Measuremen	ıt				
_		11.10			

Power and Parallelization

OpenPEOPLE	Platform	Loop Unrolling ○○○○○●	Reconfiguration	Conclusion
Con clusion				

- Experiments on two additional algorithms
- Energy is not a constant
 - \rightarrow Exploit parallelism of each task

OpenPEOPLE	Platform	Loop Unrolling ○○○○○●	Reconfiguration 0000	Conclusion
Con clusion				

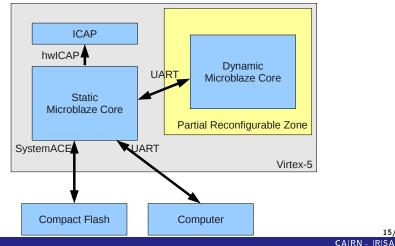
- Experiments on two additional algorithms
- Energy is not a constant
 - \rightarrow Exploit parallelism of each task

Impact of reconfiguration ?

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration	Conclusion
Outline				

1 Open PEOPLE

- 2 Platform
- 3 Loop Unrolling


4 Reconfiguration

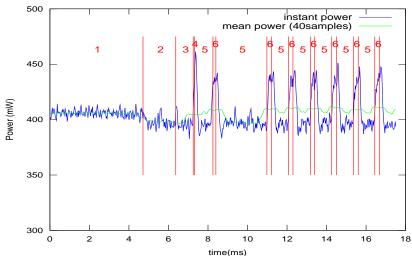
5 Conclusion

000000 •000					
Experimental Setup					
Dynamic Partial Reconfiguration					

Two Microblaze soft, cores.

One static manages the reconfiguration of the second.

OpenPEOPLE	Platform	Loop Unrolling 000000	Reconfiguration ○●○○	Conclusion
Partial Reconfiguration	Process			
PR Steps				


- (1) reconfiguration order arrives
- (2) open bitstream's file
- (3) read bitstream's header
- (4) check header's validity
- (5) **read** of a bitstream sector
- (6) write data to ICAP (Internal Configuration Access Port)
- (7) repeat (5) and (6) until the end of the bitstream.

 OpenPEOPLE
 Platform
 Loop Unrolling
 Reconfiguration
 Conclusion

 Power Measurement
 OpenPeople
 OpenPeople
 OpenPeople

Power Consumption at the Beginning of PR

Virtex-5 core power consumption during the beginning of a partial reconfiguration

17/19

CAIRN - IRISA

Robin BONAMY

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration ○○○●	Conclusion
Power Measurement				
Parameters				

Parameters that affect energy consumption

- Activity of the managing core (File System...)
- Bitstream size

Parameters that don't affect energy consumption

- Shape of the Partial Reconfiguration Region
- Difference with the previous configuration

Parameters to study

- Bitstream composition

Trivial model (Virtex5 VLX50T) : $E \simeq 39 \mu J \ per \ kB$

OpenPEOPLE	Platform	Loop Unrolling 0000000	Reconfiguration 0000	Conclusion
Conclusion				

- Energy decreases with loop unrolling
- First model
- PR impacts energy and delay
- First trivial model

Future Work

- High-level parser
- Measurements for different reconfigurable blocks
- Scheduler to optimize the energy